Determining the population properties of spinning black holes

نویسندگان

  • Colm Talbot
  • Eric Thrane
چکیده

There are at least two formation scenarios consistent with the first gravitational-wave observations of binary black hole mergers. In field models, black hole binaries are formed from stellar binaries that may undergo common envelope evolution. In dynamic models, black hole binaries are formed through capture events in globular clusters. Both classes of models are subject to significant theoretical uncertainties. Nonetheless, the conventional wisdom holds that the distribution of spin orientations of dynamically merging black holes is nearly isotropic while field-model black holes prefer to spin in alignment with the orbital angular momentum. We present a framework in which observations of black hole mergers can be used to measure ensemble properties of black hole spin such as the typical black hole spin misalignment. We show how to obtain constraints on population hyperparameters using minimal assumptions so that the results are not strongly dependent on the uncertain physics of formation models. These data-driven constraints will facilitate tests of theoretical models and help determine the formation history of binary black holes using information encoded in their observed spins. We demonstrate that the ensemble properties of binary detections can be used to search for and characterize the properties of two distinct populations of black hole mergers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instability of Ultra-Spinning Black Holes

It has long been known that, in higher-dimensional general relativity, there are black hole solutions with an arbitrarily large angular momentum for a fixed mass [1]. We examine the geometry of the event horizon of such ultra-spinning black holes and argue that these solutions become unstable at large enough rotation. Hence we find that higher-dimensional general relativity imposes an effective...

متن کامل

Massive Black Holes: formation and evolution

Supermassive black holes are nowadays believed to reside in most local galaxies. Observations have revealed us vast information on the population of local and distant black holes, but the detailed physical properties of these dark massive objects are still to be proven. Accretion of gas and black hole mergers play a fundamental role in determining the two parameters defining a black hole: mass ...

متن کامل

Supermassive Kicks for Spinning Black Holes

Recent calculations of the recoil velocity in binary black hole mergers have found the kick velocity to be of the order of a few hundred km/s in the case of non-spinning binaries and about 500 km/s in the case of spinning configurations, and have lead to predictions of a maximum kick of up to 1300 km/s. We test these predictions and demonstrate that kick velocities of at least 2500 km/s are pos...

متن کامل

Mini-discs around spinning black holes

Accretion onto black holes in wind-fed binaries and in collapsars forms small rotating discs with peculiar properties. Such “mini-discs” accrete on the free-fall time without help of viscosity and nevertheless can have a high radiative efficiency. The inviscid mini-disc model was previously constructed for a non-rotating black hole. We extend the model to the case of a spinning black hole, calc...

متن کامل

Energy Extraction from Spinning Black Holes Via Relativistic Jets

It has for long been an article of faith among astrophysicists that black hole spin energy is responsible for powering the relativistic jets seen in accreting black holes. Two recent advances have strengthened the case. First, numerical general relativistic magnetohydrodynamic simulations of accreting spinning black holes show that relativistic jets form spontaneously. In at least some cases, t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017